
NONITERATIVE SPLICING IN SOLVING HEAT-CONDUCTION PROBLEMS 

IN COMPLEX THREE-DIMENSIONAL STRUCTURES 
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An economic numerical method is developed for the solution of heat-conduction 
problems in three-dimensinal structures. 

In calculating temperature fields in complex three-dimensional structures, there are 
considerable difficulties associated with the large volume of information to be analyzed 
and the complex structure of the system of equations. 

The basic approach to the solution of this problem is to divide the structure into 
subregions and to divide the computational algorithm into a series of homogeneous problems 
for the subregions, with a definite algorithm for splicing the solutions obtained in the 
subregions to yield a general solution for the whole structure. 

The splicing method must: i) ensure the same order of approximation of the physical 
boundary conditions at the common boundaries of the subregions as within the subregions; 
2) not impose additional constraints on the stability condition of the general solution; 
3) ensure solution of the problems in the subregions by economic methods; 4) be economic 
in terms of the number of operations; 5) impose no constraints on the configuration of the 
system of subregions (the structure) as a whole; 6) be technologically expedient from the 
viewpoint of program realization and impose no constraints on: a) the order of calculation 
of the subregions; b) the parameters of their grid division; c) the order of calculation 
with coordinate division of the solution into subregions. 

The solution of this problem in the complete volume has only been obtained for rod 
structures (one-dimensional systems) [i]. For two- and three-dimensional systems, there are 
no such solutions. In [2, 3], splicing algorithms were proposed for the case of joining two 
or more plates with a common longitudinal coordinate. In [4], various particular methods of 
solving some more complex plate systems were considered. In the present work, a general 
splicing method is developed for two- and three-dimensional subregions. 

Suppose that there is a structure in the form of a system of arbitrarily connected rec- 
tangular plates and parallelepipeds. Heat propagation in this structure is described by 
a system of heat-conduction equations for each subregion, related by the splicing conditions: 
continuity (taking account of contact heat transfer) of the temperature field and energy con- 
servation at the boundaries between the subregions. Boundary conditions of any type may be 
specified at the free boundaries, and internal sources whose intensity may depend both on 
the time and spatial coordinates and on the temperature may be specified within the subre- 
gions. 

The numerical solution of the problem is constructed on the basis of the method of ele- 
mentary heat balances. In each subregion, a different independent grid for division into 
elements is introduced, and different systems of node points at which the splicing condi- 
tions must be satisfied are introduced at the boundary lines and surfaces between the sub- 
regions. 

One of the basic problems is to choose an economic method of solving the system of dif- 
ference equations in the subregion. The known economic schemes of coordinate division do not 
satisfy the above requirements, since they are not symmetric relative to the order of calcu- 
lation with respect to the coordinates. In connection with this, a division scheme is pro- 
posed, assuming complete independence of the heat-propagation processes with respect to each 
c~ordinate, within the limits of a single timestep. The equation 
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Fig. i. Error of numerical solution: i) scheme without di- 
vision; 2) usual division scheme; 3) scheme in Eq. (i); 4) 
scheme in Eq. (i), taking account of splicing algorithm. 
AT, K; t, see. 

Fig. 2. Splicing solutions in inconsistent grids: i) cen- 
ters of elements; 2) node points; 3) points for the forma- 
tion of the splicing conditions at point r. 

where 

c 9 - -  
OT 
Ot 

= LT q- f(x, t, T), x = x~ . . . . .  xe, 

LT = "~ L~T, L~T =: 
~=, Ox~ l ~"-~x~, , 

in the interval (tk_l, tk) is replaced by the following system of equations 

cp OU~ - - L ~ U ~ +  1 
V (1) 

Ua(x, th_l)=Th_l,  

Th = ~ U= - -  (8 - -  1) Th_l, 

The scheme in  Eq. (1)  i s  t e s t e d  i n  t r i a l  p r o b l e m s ,  t h e  r e s u l t s  f o r  one o f  which  a r e  
shown in  F i g .  1. A s q u a r e  p l a t e  i s  c o n s i d e r e d ;  h e a t - t r a n s f e r  c o n d i t i o n s  a r e  s p e c i f i e d  a t  
two a d j a c e n t  b o u n d a r i e s  (T b = 1200 K; ~ = 140 W/m2.K), w h i l e  t h e  o t h e r  two a r e  assumed to  
be h e a t - i n s u l a t e d .  The number o f  e l e m e n t s  w i t h  r e s p e c t  t o  each  c o o r d i n a t e  i s  t h e  same: 
10; t h e  c a l c u l a t i o n  s t e p  i s  10 s e c .  I n  F i g .  1, t h e  e r r o r s  f o r  t h e  most  h e a t e d  c o r n e r  e l e -  
ment in t h e  n u m e r i c a l  s o l u t i o n  o f  t he  p rob lem a r e  shown. Note t h a t ,  f o r  t h e  g i v e n  symme- 
t r i c  p rob l em,  t h e  s o l u t i o n  o b t a i n e d  i s  s y m m e t r i c ,  e x c e p t  f o r  t h e  d i s c h a r g e  b e h a v i o r  of  t he  
compute r .  Thus,  t he  scheme in Eq. (1)  s a t i s f i e s  a l l  t h e  above r e q u i r e m e n t s .  

To e n s u r e  s p l i c i n g  o f  the  s o l u t i o n s  o b t a i n e d  in  t h e  s u b r e g i o n s ,  i t  i s  n e c e s s a r y  t o  de-  
t e r m i n e  t h e  r e l a t i o n  between t h e  h e a t  f l u x e s  and t e m p e r a t u r e s  a t  t h e  b o u n d a r i e s  be tween sub-  
r e g i o n s  f o r  t he  k - t h  t ime s t e p  from t h e  t e m p e r a t u r e  v a l u e s  o f  t he  s u b r e g i o n  e l e m e n t s  known 
a t  t h e  (k - 1 ) - t h  s t e p  and from d a t a  on t he  t h e r m a l  p e r t u r b a t i o n s  a t  i t s  f r e e  b o u n d a r i e s .  

To t h i s  end,  a t w o - d i m e n s i o n a l  r e c t a n g u l a r  r e g i o n  ( p l a t e )  i s  c o n s i d e r e d .  The lower  and 
upper  b o u n d a r i e s  a r e  d e n o t e d  by numbers 1 and 2, r e s p e c t i v e l y ,  and t h e  l e f t - h a n d  and r i g h t -  
hand b o u n d a r i e s  by 3 and 4. Q u a n t i t i e s  b e l o n g i n g  to  a p a r t i c u l a r  boundary  a r e  d e n o t e d  by 
t he  c o r r e s p o n d i n g  s u p e r s c r i p t .  The s u b r e g i o n  i s  d i v i d e d  i n t o  I and J e l e m e n t s  in  t h e  d i r e c -  
t i o n s  o f  t h e  c o o r d i n a t e  axes .  For  t h e  sake  o f  s i m p l i c i t y ,  i t  i s  assumed,  f i r s t  o f  a l l ,  t h a t  
t he  d i v i s i o n  o f  t he  s u b r e g i o n s  and t h e  sy s t em of  node p o i n t s  a r e  c o n s i s t e n t .  The t e m p e r a t u r e  
o f  t he  e l e m e n t s  in  t h e  (k - 1 ) - t h  s t e p  i s  d e n o t e d  by T i j k _  z, i = 1 . . . . .  I ,  j = 1 . . . . .  J ,  
and t h e  t e m p e r a t u r e s  and h e a t  f l u x e s  a t  node p o i n t s  in  t he  k - t h  s t e p ,  c o r r e s p o n d i n g l y ,  by 
0r(X) and q r ( 7  ) ,  r = 1 . . . . .  I ,  r = 1, . . . ,  J ,  where 7 i s  t h e  number o f  t h e  bounda ry .  
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Assuming that, at the(k- l)-th time: step, the temperatures of all theelements are 
known, and that boundary conditions of the second kind - i.e., heat fluxes at the node 
points -are specified at the boundaries, thetemperatures of the:~near-boundaryelements at 
the k-th step is expressed in terms of the heat fluxes at node points of the boundaries. To 
this end, in accordance~with the proposed division Scheme, the problem of conversion from 
one t~me step to another is divided into a series of one-dimensional equations for a chain 
of rod~elements in the direction of the coordinate axes. Using a system of difference equa- 
tions for rods perpendicular to the boundary, for example, the first, and direct parametric 
fittin~from the opposite (second) boundary, the following expression is obtained for the 
temperature of near-boundary elements of the first boundary at the k-th step as a result of 
heat leakage in the direction perpendicular to the boundary 

Uil = R,q~') + S~q~ ~) q- Pi: (2 )  

D i r e c t  a n d i n v e r s e p a r a m e t r i c  f i t t i n z w i t h  r e s p e c t  t o a  n e a r - b o u n d a r y  r o d  leads :  t o  t h e  
f o l l o w i n g  e x p r e s s i o n  f o r  t h e  t e m p e r a t u r e  o f  t h e  n e a r - b o u n d a r y  e l e m e n t s  a t  t h e ~ k - t h  s t e p  as  
a r e s u l t  o f  h e a t  l e a k a g e  p a r a l l e l  t o  t h e  b o u n d a r y  

ul, = R; q?) + s /q?)  + P,. (3) 

f rom Eqs ( 1 ) - ( 3 ) ,  t h e  t e m p e r a t u r e  o f  t he  n e a r - b o u n d a r y  e l e m e n t s  o f  t h e  f i r s t  Finally, 
boundary is 

T~ : U~ 4- U~, -- T~_~ = R~q~ ~) q- S~q}2 ) q- B] q~a) + S] q~4) ~_ (Pz q- P[ -- TZ~_~). (4) 

Using a difference approximation for the heat flux atthe: boundary 

q~1) = __ 2__~% (Ti1__0~1)) (5) 
h 

and substituting Til from Eq. (4) into Eq. (5), the following; relation between the tempera- 
ture at node points of the first boundary and the boundary heat fluxes is obtained 

o} + (6) 
r 

where r isthe sequence of points associated, according:to the division scheme adopted, with 
the i-th point of the first boundary; air , b i are coefficients. 

If any of the boundaries 7 ~ i is free, i.e., there are, specified boundary conditions, 
the term with the corresponding qr in Eq. (6) is replaced by its numerical value and is in- 
cluded in hi. 

Performing: this procedure for all the subregion boundaries that are not free boundaries, 
a system of equations for thesubregion is obtained 

(7) 
where A is the coefficient matrix, O, q, B are vectors:. 

Invertin~ the matrix A, an expression for the heat fluxes is obtained 

$ = A- ~ - -  A-~B,. ( 8 ) .  

Determining Eq. (8) for the heat fluxes at node points for all the subregions and sub- 
stituting the results into the energy-conservation equations at the boundaries::between sub- 
regions at each of the M node points 

~ qmn = O, m :  1, .... M,  
n 

the following system of equations for the temperature at the node points at the k-th time 
step is obtained 

~_~C~O~=D~, m =  1 . . . . .  M. (9 )  
s 

Here ~, e are the number of subregions connecting at the given point and the number of 
points of these subregions. 
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Solving Eq. ( 9 ) ,  the temperature values at the node points are determined for the k-th 
time step. Then, from Eq. (8), the heat fluxes arriving at each subregion across the bound- 
aries with other subregions are calculated. 

Thus, all the boundary conditions for each subregion are determined and the temperature 
distribution there in the k-th step is calculated from the scheme in Eq. (I). 

This method is tested by comparing the results of calculation for the heating of a 
plate divided into four (2 • 2) subregions with the data of "continuous" calculation of the 
plate. The case which is most significant for this method is that of calculation with the 
introduction of node points at heated boundaries, which was done in the above example with 
a plate for the same calculation parameters. The resulting errors are shown in Fig. i (curve 
4). It is evident that the method does not produce more errors than the usual difference 
scheme without division (curve i). 

Now consider the case when the division of the subregions into elements is not consistent. 
In this case, independent systems of node points are introduced at all the boundaries between 
the subregions. The positions of the node points on opposite boundaries of the subregion are 
also inconsistent. 

An interpolational relation between the temperaturesand heat fluxes at the grid points 
associated with the system of points and elements introduced is established by the method of 
smooth execution, ensuring smoothness of the interpolation function. 

The procedure for constructing the system in Eq. (7) for the node-point temperatures 
remains the same in broad outline, but the lack of agreement between the node points and the 
lines of the centers of the elements introduces some distinctive features. Above all, this 
is expressed in that Eq. (4) for the boundary element must be replaced by a similar expres- 
sion for a point on the line of the centers of boundary elements opposite the given node 
point (Fig. 2). 

A line perpendicular to the boundary is drawn from the given node point r. The heat 
flux at the point of intersection of this line with the opposite boundary is denoted by q(2) 
The temperatures in the (k - l)-th step at the points of intersection of the perpendicular 
with the lines joining the centers of the elements are calculated by interpolation. Parame- 
tric fitting from the opposite boundary gives 

U~I = R~q~ 1) + S~q(2) + p~ (i0) 

Using parametric interpolation, q(2) is expressed in terms of q~2) at the node points 

q(2) = ~.~ dtq~2), (ii) 

where d E are interpolation coefficients. 

Finally, 

Le t  q (3 )  and q (4 )  d e n o t e  t h e  h e a t  f l u x e s  a t  t h e  p o i n t s  o f  i n t e r s e c t i o n  o f  t h e  l i n e s  
j o i n i n g  t h e  c e n t e r s  of  t h e  bounda ry  e l e m e n t s  w i t h  t h e  s i d e  b o u n d a r i e s ;  t h e n  d i r e c t  and i n -  
v e r s e  p a r a m e t r i c  f i t t i n g  w i t h  r e s p e c t  t o  n e a r - b o u n d a r y  e l e m e n t s  g i v e s  

Uf~ = R] q(a) + S; q(4) _~ p; ,  i = 1 . . . .  , I, (13)  

and parametric interpolation of the given expressions gives 

us~ = R/q(~) + S~ q(~) + p; . (14) 

Expressing q(a) and q(~) in terms of the fluxes at the corresponding node points by 
parametric interpolation 

q(3) ~ '~d  n(3) q(4) 
s 

and substituting Eq. (15) into Eq. (14), it is found that 
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U;, =~ R;~d~ o~s + S; "~d~q~)+P; .  (16) 
s n 

The remainder of the procedure is as above for consistent grids, except that, in calcu- 
lating the temperature in the subregion, the heat fluxes at the rod boundaries are determined 
by interpolation with respect to their values at the node points. 

Note that this method may be extended without difficulty to systems containing three- 
dimensional subregions. 

NOTATION 

T, U, temperature; 8, temperature at the boundary between subregions; q, heat flux; t, 
time; x~, coordinate; ~, dimensionality of subregion; cp, volume specific heat; ~, thermal 
conductivity. 

i. 
2. 

3. 
4. 
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METHOD OF DETERMINING THE THERMOPHYSICAL PROPERTIES 

OF ORTHOTROPIC MATERIALS FROM THE SOLUTION OF A TWO- 

DIMENSIONAL INVERSE HEAT-CONDUCTION PROBLEM 

A. M. Mikhalev and S. V. Reznik UDC 536.2.08 

An unsteady two-dimensional inverse coefficient problem of heat conduction is 
formulated mathematically and solved. 

Recent years have seen the active development of methods of determining the thermophysi- 
cal properties (TPC) of materials which make use of empirical data obtained from the unsteady 
heating of specimens [1-3]. The theoretical foundation of these methods are mathematical 
formulations of unsteady inverse coefficient problems of heat transfer, which are usually in- 
verse heat-conduction problems (ICP). The overwhelming majority of ICP mathematical formu- 
lations are based on the assumption that heat transfer is unidimensional - an assumption 
which is keeping investigators from making thermophysical studies more informative and appli- 
cable to a broader range of temperatures. This is particularly true in regard to comprehen- 
sive study of the TPC of anisotropic materials, the use of concentrated energy flows for 
heating materials, and study of TPC directly on objects of complex structure and shape. The 
practical resolution of these issues - which will mark a new step in the methodology of ther- 
mophysical studies - should begin with the mathematical formulation and solution of unsteady 
multidimensional ICP. 

We will examine the mathematical formulation and solution algorithm of a two-dimensional 
nonlinear coefficient ICP. Let the object in thermal tests be a flat rectangular specimen 
made of a homogeneous orthotropic material in which the principal axes of the thermal conduc- 
tivity tensor coincide with the coordinate axes x I and x 2 . The TPC of the material - the 
volumetric heat capacity cp and the thermal conductivities Ixl, Ix2 - are dependent on tem- 
perature. The initial temperature of the specimen and the heat-transfer conditions on its 
faces are known. During heating (cooling), temperature is measured at several points of the 
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